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Synopsis 

A continuum theory is used to describe the rate-dependent behavior of padding materials and 
is applied to predict the impact behavior of these materials when struck by flat or spherical im- 
pactors. Numerical results are given to show the effect of varying the material and geometric 
parameters. Some implications of the theory to practical situations are discussed. 

INTRODUCTION 

This paper establishes a basis for relating simple laboratory experiments 
on padding materials to impact applications. Particular cases of flat platens 
and spherical impactors are considered in detail, since they are representative 
of geometries involved in many applications. 

Although the mechanical behavior of many materials is independent of the 
rate at which they are compressed, many polymeric foams used in padding 
applications do exhibit a dependence on strain rate. This rate dependence 
may be due to various factors. If the bulk material is in the transition region 
between its glassy and rubbery state, its properties may be strongly rate de- 
pendent.l In the rubbery and glassy states, the properties are much less rate 
dependent. Variations in the amount of rate dependence are discussed in 
the next section. Rate dependence may be caused by the structure of the 
foam. Air passing through small pores in the material will cause rate-depen- 
dent pneumatic damping.2 Compression of gases in closed cells, as well as 
rupture of the cell walls, may also contribute to rate dependen~e .~?~ 

A continuum theory is used in the next section to model the material be- 
havior, and it is assumed that the material response to a compressive stress is 
dependent on strain and rate of strain only, an assumption that has been suc- 
cessfully a ~ p l i e d ~ . ~  to impact situations in the prediction of velocity profiles. 
As can be seen in those papers, velocity is not sensitive to the particular con- 
stitutive representation of the material, though the deceleration during an 
impact is. In this paper, a basis for predicting the deceleration as well as ve- 
locity and displacement is presented. If the theory given here is experimen- 
tally validated, it will be possible to reduce the experimental testing required 
in a given application and to use calculation instead. It has been shown' in a 
series of tests on polyurethane foam that cross-sectional shape and area of 
the foam specimen do not affect stress values, and at corresponding strains 
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they are not affected by foam thickness. These results give confidence in the 
one-dimensional theory used in the next section. 

This theory can be applied directly to impacts involving flat objects, and 
the load on flat platens is determined in a separate section. Such geometry is 
of wide application in the packaging field, as it includes the protection of box- 
shaped goods and the padding of any flat surface. The other typical geome- 
try considered is that of a spherical indenter striking a flat pad. This is an 
idealization of a corner hitting some padding, but is relevant to other applica- 
tions in other fields. The one-dimensional theory previously used is adapted 
to give the load on a spherical indenter. It is possible to use the theory in a 
similar way for other simple shapes such as a cylinder, but only results for a 
sphere and a flat platen are presented here. In impacts, the rate of strain 
varies from a high initial value to zero, so that in analyzing the impact behav- 
ior of a rate-dependent material, account must be taken of the changing 
properties of the material during the impact. In the section on impact pre- 
diction, impact behavior is analyzed for the two geometries considered, and 
numerical results are presented in graphic form and discussed in the fol- 
lowing section. 

The theory used in this paper is relatively unsophisticated, and it fails to 
account for all aspects of an impact. Its limitations and the errors thereby 
introduced are discussed in the section on material characteristics. It is ar- 
gued, however, that the theory is capable of giving quantitative predictions of 
behavior during impact. The material behavior is described in terms of three 
parameters, though in many cases one or two of these may be zero. It is ta- 
citly assumed that the parameters are experimentally determined from con- 
stant rate tests, but such tests may not always be realizable. In this case, the 
parameters can be found from a suitable combination of impact tests with 
spherical and flat impactors. A final section summarizes the main conclu- 
sions. 

MATERIAL CHARACTERIZATION 

For the compression of a rectangular block of material by a flat platen, we 
assume a one-dimensional behavior. We also assume that the stress depends 
only on strain and rate of strain, so that we may write 

u = F(E,i) (1) 

where CT is the stress, E is the strain, and i is the strain rate. Experimental 
work576 suggests that this dependence alone is sufficient to characterize en- 
ergy-absorbing materials in impact applications. Such work also indicates 
that dependence on strain and strain rate is separable, so that eq. (1) may be 
written in the form 

u = f(e)g(i) (2) 

It  is further shown5 that a power law representation of the rate dependence 
fits the data well, and for a wide class of padding materials, the constitutive 
equation takes the form 

u = K(1-  E p i r  (3) 



PADDING MATERIALS 2895 

Displacement 

Fig. 1. Experimental curves of load/displacement in a constant rate test.s 

Stress 

0 0.35 0: 7 
Compressive strain 

Fig. 2. Stress-strain behavior of SBR-coated urethane foam in constant rate tests5 (velocities 
33.3, 16.7,8.3,3.3, and 0.83 mm/s in descending order). Unloading, at all rates, given by the bro- 
ken line. 

where K ,  n, and r are constants. The indexes are typically in the ranges 0 < 
r < 0.3,O < n < 4. Examples of such materials exhibit the behavior shown in 
Figures 1 and 2. Equation (3) does not model the initial region (typically, 
strains less than 10%) in which the load builds up from zero to the plateau 
level. A t  high compressive strains (typically greater than 70%), the material 
density is considerably increased, and the load builds up rapidly. This in- 
crease is ignored in eq. (3) for n = 0. However, the model is good for inter- 
mediate strains which are of great practical interest. Errors in the low-strain 
region are usually unimportant; indeed, for spherical indenters, the difference 
between theory and experiment is negligible since the area of contact is small 
for low strains. 

The use of single parameter r to model the rate dependence is valid only 
for a limited range of strain rates, though this range may cover several d w -  
ades. In an impact, the velocity will vary from its initial value to zero, ana 
eq. (3) predicts zero load at  zero velocity for r # 0. A static loading test on 
the material would show that this is not true. We expect that the rate depen- 
dence would take the form of Figure 3,5 and it is clear that static or low rate 
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Fig. 3. Illustration of the dependence of stress on strain rate for a urethane foam5 (logarithmic 
scales). 

data will prove a poor guide to behavior a t  higher rates, a result confirmed ex- 
~erimentally.~ Different values of r for the three regions in Figure 3 have 
been used,5 indicated by the broken lines, though in a given impact situation 
only one value of r was used, that appropriate to the initial strain rate. 
Within the attainable experimental accuracy and the consistency of foam ma- 
terials, a single parameter r is adequate to model the rate dependence, choos- 
ing the value appropriate to the steepest part of Figure 3. There are obvious 
dangers in extrapolating to higher or lower rates, but these are minimized in 
practice, as the rate in an impact soon falls. For low rates, eq. (3) underesti-- 
mates the load, but the predicted peak load during the impact will not be af- 
fected. The theory also neglects any rebound. Again, the peak load is cor- 
rectly predicted, and providing the rebound is slow enough to cause no fur- 
ther damaging impacts, i t  can be ignored. It is worth commenting that the 
comparison of impact data with calculation' is based on curves of velocity 
against strain. However, velocity is much less sensitive to a particular consti- 
tutive representation than the load, and the good correlation obtained5 does 
not necessarily imply good prediction of the load profile. 

LOAD ON FLAT AND SPHERICAL INDENTERS 

The load on a flat indenter is readily calculated from eq. (3); providing any 

L = A K ( 1 -  t)-ni' (4) 

where A is the area of contact. An exact theory for a spherical indenter 
would need to be three-dimensional, but a modified version of the one-di- 
mensional theory already outlined has proved to give good agreement with 
experiment. In this theory, the specimen is divided into thin cylindrical 
shells concentric with the line of travel of the center of the sphere. Each 
shell is of uniform height, though different shells have 'different heights. 
Each shell is assumed to deform in a one-dimensional manner according to 
eq. (3). The load on the sphere due to the deformation of one shell is calcu- 
lated, and the total load on the sphere is obtained by integration over the re- 
gion of contact. 

With the notation of Figure 4, a cylindrical shell whose inner and outer 
walls subtend angles of 20 and 20 + 260 at  the center of the sphere has a pro- 
jected area on the base of the specimen of 

(5) 

edge effects may be neglected, the load is 

6A = 27rR sin 0.R60- cos 0 
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Fig. 4. Indentation of a sphere into material. Elevation through a diametrical plane. 

O E  F 

Fig. 5. Indentation of a sphere. Geometric construction to determine the stressed region. 

where R is the radius of the sphere. Assuming that the shell is compressed 
according to one-dimensional theory, the stress is 

IJ = u(Y,Y) (6) 

Let the maximum strain be t and the thickness of the material be h ,  so that 

cos 0 = 1 - h(t . -  y ) / R  (7) 

The load on the sphere due to the compression of a single shell is &A, and so 
the total load is 

where 

cos a = 1 - ht/R (9) 

provided ht < R. The integration to determine L should only be made over 
the area of sphere in contact with the padding material. For ht > R,  the 
upper limit in eq. (8) becomes ~ 1 2 .  The expression for the load can be re- 
written in the form 

with suitable modification to the lower limit when he > R. 
Loads calculated from eq. (10) are consistently too high, since we assume 

that only material directly beneath the contact area is compressed. We 
should expect, however, that the stressed region would be similar to the shad- 
ed area in Figure 5. This is only a simple approximation to the stressed area. 
Material near the circle of contact will be sheared, and no account is taken of 
this. The constitutive equation, however, is only approximate; and since 
padding materials show considerable variation in properties from sample to 
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sample, a more accurate and complicated approach is inappropriate. In any 
vertical diametrical plane through the sphere, the stress will be zero at  D and 
at  some point F on the bottom of the material, and there will be a line of zero 
stress joining them. The simplest form of such a curve is an arc of circle cut- 
ting the sphere and the lower face of the material normally. With the nota- 
tion of Figure 5, we obtain 

( 1 1 )  1 BD = ( 2 R h ~  - h2E2)ll2 
OF = (2Rht - h2t2 + h2t)(2Rht - h2c2)-1/2 

for ht ,< R.  According to the theory discussed earlier, the load on the materi- 
al is supported by an area of ?rBD2, while the modified theory suggests that 
the load is supported over an area of ?rOF2. The stress levels previously ob- 
tained were too high, and we now divide them by a factor of ?rDF2/aBD2, so 
that the corrected load on a sphere is 

L = 2rh2 (1 + )-' J ' a ( y , i ) ( y  - E + R/h)dy 
2R/h - E 

We shall work throughout assuming t < R ,  though appropriate modification 
can be made for deeper penetrations. Adjustments can be made, too, for 
small specimens for which the stressed region extends to the edge of the ma- 
terial. 

IMPACT PREDICTION 

Flat Indenters 

Let us consider a flat indenter of mass M per unit area striking some mate- 
rial of thickness h a t  an impact velocity of hq, where q is the initial strain 
rate. From eq. (41, the equation of motion is 

Mhi: = - K ( 1 -  t ) -n ir  (13 )  

which, on writing i = idildt and integrating, gives 

i = q ( l  - aX(t))l'(2--r) 

where a is the nondimensional parameter 

a = ( 2  - r)K/Mhq2-' 

and 

(16) 
X(E) = -log ( 1  - e )  for n = 1 

= {(l - - l ) / ( n  - 1) otherwise 

This indenter will be brought to rest when i = 0, which, from eq. (14 ) ,  implies 

t = 1 - exp ( - l l a )  for n = 1 

otherwise 
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TABLE I 
Maximum Deceleration During the Impact of a Flat Indenter 

r n = O  n = l  n z 0,l -____ . 

0 012 /a 
2 

We note the important special case of n = 0. Then, X = E ,  and the body 
comes to rest when L = a-l. If a < 1, however, the indenter will not be 
stopped. In practice, the theory with n = 0 will break down for t > 0.7, say, 
and the load will increase rapidly at high strains to stop the indenter before c 
reaches 1. 

By integrating eq. (14), we obtain the nondimensional time 

and substituting eq. (14) into eq. (13) the nondimensional deceleration is 

~ - 2 1 i J  = a(2  - r)-lTr(l - t)-n (1 - aX(c) )r / (2- ' )  (19) 

From eq. (19), we can calculate the maximum deceleration during the impact; 
the results are given in Table I. 

Spherical Indenters 

The load on a spherical indenter was derived in the previous section. 
Writing 

8rKhp2(2 - r )  
p = R/h, b = 

M(1+ 2p)2?+-' 

where M is the mass of the sphere and R is its radius, we obtain from eq. (12) 
the equation of motion of the sphere: 

bq2-' 
2 - r  

i = - k' (1 - €/2P)2 (1 - d(2p + 1))-2 p ( € )  (21) 

where 
p(c) = ~ ( p  - e/2) for n = 0 

i = -c  - (1 - E + p)log(l - E )  

= 41 - E + p ) / ( l  - E )  +log (1 - 6 )  

= ( l -€+p){( l l -~€)1-~  -,lj/(n - , l )  -{(l- €)2--n - l)/(n - 2) 

for n = 1 

for n = 2 
otherwise 

(22) 

On integrating (211, we obtain 

which may be substituted in eq. (21) to give i as a function of E .  
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Fig. 6. Deceleration of a it indenter for varying rate dependence with n = 0 (solid curves) 
and n = 1 (broken curves); a = 1.2, 1.14,1.08 for r = 0, 0.1,0.2, respectively. 

OO 

Values of n 

2 

Fig. 7. Deceleration of a flat indenter hitting materials with different values of n; a = 1.14, r = 
0.1. 

NUMERICAL RESULTS 

Some numerical results obtained from the theory of the previous section 
are given in Figures 6-11. The first three figures indicate the loads on a flat 
indenter, given in nondimensional form. In Figure 6, we see that a rate-de- 
pendent material causes a lower load than the equivalent rate-independent 
material (for n > 0). The parameter a was chosen to give the same initial de- 
celeration, so that we are comparing materials with the same response at  the 
initial rate of strain. From Figure 7, it is clear that a material with a flat 
stress-strain response in constant rate tests (n = 0) is more desirable, since it 
gives a lower peak load. However, a greater thickness of material is required. 
Different impact speeds are compared in Figure 8. Values of a were chosen 
so that the initial decelerations reflect changes in 71 only, and the strain decel- 
eration is plotted rather than the nondimensional deceleration of earlier fig- 
ures. The rise in peak loading with increasing impact speed is due to two 
factors, higher velocities and greater penetration. The first cause, does not 
apply to a rate-independent material, and the second does not affect the 
loading for materials with n = 0. 
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Fig. 8. Deceleration of a flat indenter striking padding at different rates; n = 1, r = 0.1; a = 
15.0,4.03,1.71,1.08 for 7 = 1 , 2 , 3 , 4  s-l, respectively. 

= I  

Fig. 9. Deceleration of a spherical indenter during impact for different values of r (broken 
curves, p = 3) and p (solid curves, r = 0.1); n = 0; b = 5.0,4.75,4.5 for r = 0, 0.1,0.2, respectively 
(broken curves); b = 6.667,9.6,11.02 for p = 1,2,3,  respectively (solid curves). 

r)-21il 1 Values of n 

Fig. 10. Deceleration of a spherical indenter hitting materials with different values of n; r = 
0.1, b = 3.6, p = 3. 

Results for spherical indenters are shown in Figures 9-11. In Figure 9, the 
effects of varying r and p are compared, and parameter b is chosen to reflect 
changes in these parameters alone. We note, as for flat indenters, that the 
peak loading decreases with increasing rate dependence. A smaller sphere 
penetrates further into the material than a larger one, but a t  a lower decelera- 
tion. Alternatively, the figure may be interpreted to show, for a given sphere, 
that a thicker pad of material will lead to lower loads. Materials with differ- 
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Fig. 11. Deceleration of a spherical indenter at different impact speeds; n = 0, r = 0.1, p = 3; b 
= 50.0, 13.4,6.2,3.6 for 7 = 1,2,3,4 8-l. respectively. 

ent values of n are compared in Figure 10; the peak load increases with n, 
while the penetration decreases. The effect of different impact speeds is 
shown in Figure 11. Parameter b is chosen to reflect changes in Q only. 
Higher impact speeds require deeper penetration into the material to absorb 
the impact energy, and this leads to higher loads. The effect of higher peak 
loads with increasing 17 would be still greater for materials with n > 0. 

CONCLUSIONS 

A theory has been given to describe the impact behavior of padding materi- 
als. The rate dependence of such materials can be adequately modeled by a 
power law model, and two other parameters have proved sufficient to de- 
scribe the strain dependence. The relevant quantities required in assessing 
the suitability of a material for a given impact application are the maximum 
deceleration of the impacting object, the depth of penetration into the pad- 
ding, and, possibly, the duration of the impact. A simple formula gives those 
quantities directly for a flat impactor. For a spherical indenter, however, the 
full time history of the impact must be computed to give these quantities. 

For a flat impactor, a rate-dependent material has advantages over a rate- 
independent material. The peak loading is slightly less, but, more impor- 
tantly, for a lower impact speed, the load is less. For a spherical indenter, 
the peak loading is again slightly less for a rate-dependent material, but the 
reduction for lower impact speeds is insignificant compared with the reduc- 
tion in load resulting from a smaller area of contact a t  the lower speeds. It 
should be noted that when the compressive strain exceeds about 70%, the 
load rises rapidly; and if such strains are anticipated, the backing structure 
can be designed to yield at  an appropriate stress level to reduce any further 
compression of the foam. An example from the packaging industry is a pack- 
ing case consisting of a wooden box with an interior foam lining. An article 
inside will be cushioned by the foam, but when the load reaches a sufficiently 
high value, the wooden casing will bend and absorb some of the energy. 

It is not envisaged that the work reported here will eliminate all impact 
testing of padding materials, but it should enable the choice of materials to 
be narrowed before impact tests are carried out and the number of these tests 
to be reduced. 
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